Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos de Revisión

Vol. 6 Núm. 11 (2026): Revista Simón Rodríguez

Transformando la educación con el metaverso: nuevas perspectivas para los estudiantes de radiología. Revisión narrativa

Transforming education with the metaverse: new perspectives for radiology students. Narrative revision
Publicado
2026-02-02

El metaverso emerge como una plataforma digital innovadora con el potencial de revolucionar la educación médica, particularmente en el campo de la radiología. El objetivo del estudio es analizar el impacto del metaverso como herramienta educativa en la formación de estudiantes de radiología. El enfoque es cualitativo, diseño de revisión narrativa de la literatura publicados entre 2019 y 2024. Las bases de datos consultadas fueron PubMed, Scopus, Google Académico, ERIC y SciELO, siendo seleccionados 15 estudios para la revisión. Los resultados indican que el metaverso, además de ser una herramienta eficaz para el aprendizaje, mejora la confianza de los estudiantes, reduce los errores clínicos y proporciona oportunidades únicas para la educación interprofesional. En conclusión, el metaverso se posiciona como una herramienta clave para la formación radiológica, al ofrecer simulaciones avanzadas que fortalecen el aprendizaje, el pensamiento crítico y la seguridad clínica. Su implementación enfrenta desafíos como el alto costo, las limitaciones de infraestructura tecnológica y preocupaciones sobre privacidad y ciberseguridad. 

The metaverse is emerging as an innovative digital platform with the potential to revolutionize medical education, particularly in the field of radiology. The aim of this study is to analyze the impact of the metaverse as an educational tool in the training of radiology students. A qualitative approach was adopted, using a narrative literature review design of studies published between 2019 and 2024. The databases consulted were PubMed, Scopus, Google Scholar, ERIC, and SciELO, from which 15 studies were selected for review. The results indicate that the metaverse, beyond being an effective learning tool, enhances students’ confidence, reduces clinical errors, and provides unique opportunities for interprofessional education. In conclusion, the metaverse positions itself as a key tool in radiology education by offering advanced simulations that strengthen learning, critical thinking, and clinical safety. However, its implementation faces challenges such as high costs, technological infrastructure limitations, and concerns related to privacy and cybersecurity.

Sección:
Artículos de Revisión

Referencias

  1. Acosta, S., y López, D. (2024). Enhancing radiography education through immersive virtual reality. Radiology, 30, 42-50. https://pdf.sciencedirectassets.com/272334/1-s2.0-S1078817424X00097/1-s2.0-S1078817424002712/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEPX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFBquZizXLKwjgKYgRpaKwQonjsWRU530If%2BiDabtW9cAiAzfGS%2FUAYs
  2. Aguado, P., y Sendra, F. (2022). Gamificación: conceptos básicos y aplicaciones en radiología. Radiología, 65(2), 122-132. https://www.elsevier.es/es-revista-radiologia-119-articulo-gamificacion-conceptos-basicos-aplicaciones-radiologia-S0033833822002284?newsletter=true
  3. Ahuja, A., Polascik, B., Doddapaneni, D., Byrnes, E., y Sridhar, J. (2023). The Digital Metaverse: Applications in Artificial Intelligence, Medical Education, and Integrative Health. Integrative Medicine Research, 12(1), 1-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860100/
  4. Awan, O., Dey, C., Salts, H., Brian, J., Fotos, J., Royston, E., Braileanu, M., Ghobadi, E., Powell, J., Chung, C., & Auffermann, W. (2019). Making Learning Fun: Gaming in Radiology Education. Academic Radiology, 26(8), 1127-1136. https://pubmed.ncbi.nlm.nih.gov/31005406/
  5. Batool, S., Adnan, U., O Lewis, K., & Sadia, S. (2024). Metaverse-powered basic sciences medical education: bridging the gaps for lower middle-income countries. Annals of medicine, 56(1), 1-13. https://pmc.ncbi.nlm.nih.gov/articles/PMC11132556/#CIT0013
  6. Bokyung, K., Nara, H., Eunji, K., Parque, Y., & Soyoung, J. (2021). Educational applications of metaverse: possibilities and limitations. Journal of Educational Evaluation for Health Professions, 18(32), 1-13. https://pubmed.ncbi.nlm.nih.gov/34897242/
  7. Cates, C., Loon, L., Gallagher, A. 2016. Comparación prospectiva, aleatoria y ciega del entrenamiento con simulador de realidad virtual de física completa basado en la progresión de la competencia versus la experiencia vascular invasiva para el aprendizaje de la angiografía de la arteria carótida por operadores muy experimentados. BMJ Simulation & Technology Enhanced Learning. 2; 1-5. https://pubmed.ncbi.nlm.nih.gov/35516451/
  8. Euripedes, A., Luiz. (2024). Second Life metaverse technology as a proposal in immersive learning (i-learning) in the teaching and learning process in radiology technology undergraduate Revista BST. 1-4. https://revistabst.com.br/wp-content/uploads/2024/02/01.pdf
  9. Gelmini, Y., Duarte, M., Moreira, A., Bueno, J., & Carnevale, F. (2021). La realidad virtual en la educación en radiología intervencionista: una revisión sistemática. Radiología Brasileira, 54(4), 254-260. https://www.scielo.br/j/rb/a/jwyvPLw3Mj96BCktd8nBxBq/?format=pdf&lang=en
  10. Ghaempanah, F., Hossein, R., Hasanabadi, P., Moasses, B., Noroozpoor, R., Darya, H., y Moodi, A. (2024). Metaverse and its impact on medical education and health care system: A narrative review. Health science reports, 7(9), 1-9. https://doi.org/10.1002/hsr2.70100
  11. International Telecommunication Union (ITU). (2024). Measuring digital development: Youth Internet use 2024. Recuperado de https://www.itu.int/itu-d/reports/statistics/2024/11/10/ff24-youth-internet-use
  12. Kalinkara, Y. y Ozdemir, O. (2023). Anatomy in the metaverse: Exploring student technologyacceptance through the UTAUT2 model. Anatomical Sciences Educations, 17: 319-336. https://doi.org/10.1002/ase.2353
  13. Kreiser, K., Gehling, K., Zimmer, C. 2018. Simulation in Angiography – Experiences from 5 Years Teaching, Training, and Research. Fortschr Röntgenstr, 191: 547-552. https://www.thieme-connect.com/products/ejournals/pdf/10.1055/a-0759-2248.pdf
  14. Lauro, B., Aronoff, E., Guilundho, C., Shooley, R., Patel, S., Noormahomed, E., & Mocumbi, A. (2019). Closing the Gaps on Medical Education in Low-Income Countries Through Information & Communication Technologies: The Mozambique Experience. Biomedical Journal of Scientific & Technical Research, 16(4), 12159-12165. https://pubmed.ncbi.nlm.nih.gov/37448758/
  15. Liam, S., Carpio, G., Lau, Y., Chee, S., Shiong, W., & Sun, P. (2018). Multiuser virtual worlds in healthcare education: A systematic review. Nurse Education Today, 65, 136-149. https://doi.org/10.1016/j.nedt.2018.01.006
  16. Lorenzo, R., Pavía, J., y Sendra, F. (2018). Posibilidades del entorno virtual tridimensional Second Life para la formación en radiología. Radiología, 60(4), 1-7. https://doi.org/10.1016/j.rx.2018.02.006
  17. Lorenzo, R., Rudolhi, T., Ruiz, M., y Sendra, F. (2019). Anatomical Sciences Education. Game-Based Learning in Virtual Worlds: A Multiuser Online Game for Medical Undergraduate Radiology Education whitin Second Life, 1-16. https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ase.1927
  18. Manjón, F. (2015). Creación, desarrollo y evaluación de un entorno inmersivo desatendido para el aprendizaje de radiología basado en juegos 3D. https://core.ac.uk/download/pdf/80526951.pdf
  19. Martí, A., Muñoz, A., Gracia, L., y Solanes, E. (2023). Using WebXR Metaverse Platforms to Create Touristic Services and Cultural Promotion. Applied Sciences, 13(14). https://doi.org/10.3390/app13148544.
  20. Matwala, K., Shakir, T., Bran, C., y Chand, M. (2023). The surgical metaverse. Cirugía Española, 102(S1), 61-65. https://www.elsevier.es/en-revista-cirugia-espanola-english-edition--436-pdf-S2173507723002296
  21. Nuñeza, J., Krynskia, L., y Oteroa, P. (2024). The metaverse in the world of health: The present future. Challenges and opportunities. Archivos Argentivos de Pediatria, 122(1), 1-5. https://pubmed.ncbi.nlm.nih.gov/37171469/
  22. Pérez, A., y Sendra, F. (2023). La evaluación clínica objetiva estructurada (ECOE): aspectos principales y papel de la radiología. Radiología, 65, 55-65. https://www.elsevier.es/es-revista-radiologia-119-pdf-S0033833822002260
  23. Pino, A., Domínguez, D., Lorenzoi, R., Pavia, j., Ruiz, M., Sendra, F. (2023). Improving Oral Presentation Skills for Radiology Residents through Clinical Session Meetings in the Virtual World Second Life. Enviromental Research and Public Health, 20(6). 4738. https://doi.org/10.3390/ijerph20064738
  24. Qayyum, A., Bilal, M., Hadi, M., Capik, P., Caputo, M., Vohra, A., Qadir, J. 2023. Can We Revitalize Interventional Healthcare with AI-XR Surgical Metaverses?. Computer Science. https://arxiv.org/pdf/2304.00007
  25. Radianti, J., Majchrzak, T., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 1-29. https://www.sciencedirect.com/science/article/pii/S0360131519303276?via%3Dihub
  26. Rospigliosi, P. (2022). Metaverse or Simulacra? Roblox, Minecraft, Meta and the turn to virtual reality for education, socialisation and work. Interactive Learning Environments, 30(1), 1-3. https://doi.org/10.1080/10494820.2022.2022899
  27. Rudolphi, T., Lorenzo, R., Domínguez, D., Ruiz, M., y Sendra, F. (2024). An Interuniversity Competition for Medical Students to Learn Radiology in Second Life Metaverse. American College of Radiology, 21(5), 812-821. https://pdf.sciencedirectassets.com/273076/1-s2.0-S1546144024X00058/1-s2.0-S1546144023008426/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEA8aCXVzLWVhc3QtMSJGMEQCIA9BIc8QfyC%2BOCnOel8yM7mCF1yRLRRHbx6gj38cpvnbAiBdVMJC92KwdBxbBEEewwOsAcwExzoDfUXGRF5K8cb6sS
  28. Sendra, F., Lorenzo, R., Rudolphi, T., y Ruiz, M. (2024). The Second Life Metaverse and Its Usefulness in Medical Education After a Quarter of a Century. Journal of Medical Internet Research, 6(26). https://doi.org/10.2196/59005
  29. Silva, T., Andrade, M., Freitas, D., Oliveira, C., y Takeshita, W. (2024). Metaverse and oral and maxillofacial radiology: Where do they meet? European Journal Radiology, 170, 1-2. https://pubmed.ncbi.nlm.nih.gov/38101195/
  30. Skalidis, I., Arangalage, D., Kachrimanidis, I., Antiochos, P., Tsioufis, K., Fournier, S., Skalidis, E., Olivotto, I., & Maurizi, N. (2024). Metaverse-based cardiac magnetic resonance imaging simulation application for overcoming claustrophobia: a preliminary feasibility trial. Future Cardiology, 20(4), 191-195. https://pubmed.ncbi.nlm.nih.gov/38699964/
  31. Sociedad Europea de Radiología. (2019). ESR statement on new approaches to undergraduate teaching in Radiology. Insights Imaging, 10(109), 1-10. https://doi.org/10.1186/s13244-019-0804-9
  32. Tang, Y., Liang, H., Yang, X., Xue, X., y Zhan, J. (2024). The metaverse in nuclear medicine: transformative applications, challenges, and future directions. Frontiers in Medicine, 11, 1-7. https://pubmed.ncbi.nlm.nih.gov/39371341/
  33. Tobilla, V. (2023). Aprendizaje situado en mundos virtuales, una experiencia de participación a tr ticipación a través de juegos de r és de juegos de rol. Journal of Roleplaying Studies and STEAM, 2(2); 52-78. https://digitalcommons.njit.edu/jrpssteam/vol2/iss2/1
  34. Zhang, X., Chen, Y., Hu, L., y Wang, Y. (2022). The metaverse in education: Definition, framework, features, potential aplications, challenges, and future research topics. Frontiers in Psychology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595278/pdf/fpsyg-13-1016300.pdf
  35. Zhao, L., Sun, J. (2022). Extended reality metaverse application in cancer radiotherapy: New opportunities and challenges. Digital Medicine, 8, 24, https://journals.lww.com/dm/fulltext/2022/08010/extended_reality_metaverse_application_in_cancer.24.aspx