Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos de Revisión

Vol. 5 Núm. 10 (2025): Revista Simón Rodríguez

Metodologías Activas en Ingeniería Química Universitaria: Revisión Sistemática

Active Methodologies in University Chemical Engineering Education: A Systematic Review
Publicado
2025-08-15

La implementación de metodologías activas en la educación superior busca transformar los enfoques tradicionales, promoviendo el aprendizaje significativo y el desarrollo de competencias profesionales en ingeniería química. Este estudio sintetizó la evidencia científica sobre metodologías activas en programas universitarios de ingeniería química mediante una revisión sistemática siguiendo el protocolo PRISMA. Se analizaron 20 estudios de bases de datos académicas (2015-2025) aplicando criterios rigurosos de inclusión. Los resultados evidenciaron que el aprendizaje basado en problemas, aula invertida y aprendizaje colaborativo mejoran significativamente la motivación estudiantil, comprensión conceptual y desarrollo de competencias transversales. Las tecnologías emergentes como realidad virtual y gamificación muestran impactos prometedores. Se concluye que las metodologías activas representan un enfoque pedagógico efectivo, aunque se requiere mayor investigación con diseños comparativos robustos.

The implementation of active methodologies in higher education seeks to transform traditional approaches, promoting meaningful learning and professional competency development in chemical engineering. This study synthesized scientific evidence on active methodologies in university chemical engineering programs through a systematic review following the PRISMA protocol. Twenty studies from academic databases (2015-2025) were analyzed applying rigorous inclusion criteria. Results showed that problem-based learning, flipped classroom, and collaborative learning significantly improve student motivation, conceptual understanding, and transversal competency development. Emerging technologies like virtual reality and gamification show promising impacts. It is concluded that active methodologies represent an effective pedagogical approach, although more research with robust comparative designs is required.

Sección:
Artículos de Revisión

Referencias

  1. Alfutimie, A., & Barakbah, S. M. A. (2025). Hybrid learning in Chemical Engineering: assessing the benefits of online labs as a supplement to traditional practices. Cogent Education, 12(1), 2498124. https://doi.org/10.1080/2331186X.2025.2498124
  2. Arteaga, D., Chavarro Córdoba, M., & Gómez-Delgado, D. C. (2025). The Flipped Classroom as a Pedagogical Approach for Stereochemistry Learning in an Undergraduate Course. Journal of Chemical Education, 102(1), 452–462. https://doi.org/10.1021/acs.jchemed.4c00856
  3. Castelló, E., Santiviago, C., Ferreira, J., Coniglio, R., Budelli, E., Larnaudie, V., Passeggi, M., & López, I. (2023). Towards competency-based education in the chemical engineering undergraduate program in Uruguay: Three examples of integrating essential skills. Education for Chemical Engineers, 44, 54–62. https://doi.org/10.1016/j.ece.2023.05.003
  4. Chakraborty, S., & Galatro, D. (2025). Incorporating Agile Methodologies Into the Chemical Engineering Curriculum. Computer Applications in Engineering Education, 33(1), e22805. https://doi.org/10.1002/cae.22805
  5. Díaz, I., González, E. J., González-Miquel, M., & Rodríguez, M. (2024). Application of serious games in chemical engineering courses. Education for Chemical Engineers, 46, 22–32. https://doi.org/10.1016/j.ece.2023.10.002
  6. Franco, L. F. M., da Costa, A. C., de Almeida Neto, A. F., Moraes, Â. M., Tambourgi, E. B., Miranda, E. A., de Castilho, G. J., Doubek, G., Dangelo, J. V. H., Fregolente, L. V., Lona, L. M. F., de La Torre, L. G., Alvarez, L. A., da Costa, M. C., Martinez, P. F. M., Ceriani, R., Zemp, R. J., Vieira, R. P., Maciel Filho, R., Vianna, S. S. V., Bueno, S., Vieira, M., & Suppino, R. S. (2023). A competency-based chemical engineering curriculum at the University of Campinas in Brazil. Education for Chemical Engineers, 44, 21–34. https://doi.org/10.1016/j.ece.2023.03.003
  7. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111
  8. Gil-Castell, O., Carrillo-Abad, J., Ribes, J., Sanchis-Martínez, R., Martí, N., Ruano, M. V., Peñarrocha, J. M., Pastor, L., Izquierdo, M., Jiménez-Benítez, A., Sánchez, R., Fernández, R., Serna-García, R., SanValero, P., Erans, M., Badia, J. D., Giménez, J. B., & Cháfer, A. (2025). Advancing chemical engineering education: Amplifying active learning with Wooclap’s innovative pedagogical techniques. Education for Chemical Engineers, 52, 14–25. https://doi.org/10.1016/j.ece.2024.10.004
  9. Lapitan, L. D. S., Jr., Chan, A. L. A., Sabarillo, N. S., Sumalinog, D. A. G., & Diaz, J. M. S. (2023). Design, implementation, and evaluation of an online flipped classroom with collaborative learning model in an undergraduate chemical engineering course. Education for Chemical Engineers, 43, 58–72. https://doi.org/10.1016/j.ece.2022.12.003
  10. Maceiras, R., Feijoo, J., Alfonsín, V., & Perez-Rial, L. (2025). Effectiveness of active learning techniques in knowledge retention among engineering students. Education for Chemical Engineers, 51, 1–8. https://doi.org/10.1016/j.ece.2024.09.001
  11. Neves, R. M., Lima, R. M., & Mesquita, D. (2021). Teacher Competences for Active Learning in Engineering Education. Sustainability, 13(16), 9231. https://doi.org/10.3390/su13169231
  12. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  13. Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
  14. Ramos, B., & Condotta, R. (2024). Enhancing Learning and Collaboration in a Unit Operations Course: Using AI as a Catalyst to Create Engaging Problem-Based Learning Scenarios. Journal of Chemical Education, 101(8), 3246–3254. https://doi.org/10.1021/acs.jchemed.4c00234
  15. Rebello, C. M., Deiró, G. F., Knuutila, H. K., Moreira, L. C. S., & Nogueira, I. B. R. (2024). Augmented reality for chemical engineering education. Education for Chemical Engineers, 47, 30–44. https://doi.org/10.1016/j.ece.2023.12.001
  16. Requies, J. M., Barrio, V. L., Acha, E., Agirre, I., Viar, N., & Gandarias, I. (2024). Integration of sustainable development goals in the field of process engineering through active learning methodologies. Education for Chemical Engineers, 49, 26–34. https://doi.org/10.1016/j.ece.2024.01.002
  17. Suárez-López, M. J., Blanco-Marigorta, A. M., & Gutiérrez-Trashorras, A. J. (2023). Gamification in thermal engineering: Does it encourage motivation and learning? Education for Chemical Engineers, 45, 41–51. https://doi.org/10.1016/j.ece.2023.07.001