Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos de Revisión

Vol. 5 Núm. 10 (2025): Revista Simón Rodríguez

Evaluación formativa e inteligencia artificial: marcos de gobernanza y transparencia institucional

Formative assessment and artificial intelligence: governance frameworks and institutional transparency
Publicado
2025-11-27

La adopción de inteligencia artificial (IA) en evaluación formativa (EF) en educación superior ofrece oportunidades para mejorar la retroalimentación y la autorregulación, pero plantea desafíos en ética, privacidad y equidad que requieren marcos de gobernanza conectando principios con prácticas institucionales. Esta revisión sistemática y de mapeo conceptual tiene como objetivo analizar marcos de gobernanza, principios de transparencia y prácticas responsables para la adopción de IA en EF en educación superior, proponiendo un marco operativo adaptable y una checklist de implementación con indicadores de éxito. Se realizó una búsqueda sistemática en Scopus, Web of Science, IEEE Xplore, ACM Digital Library, ERIC y Scielo, con criterios de inclusión entre 2019 y 2025, culminando con la inclusión de 20 estudios representativos para revisión final. Los resultados incluyen una taxonomía de 4 marcos de gobernanza, principios de transparencia algorítmica con 5 elementos principales, y prácticas institucionales responsables con 6 dimensiones operacionales. La revisión evidencia que la integración responsable de inteligencia artificial en la evaluación formativa requiere marcos de gobernanza adaptativos y prácticas institucionales holísticas que garanticen transparencia, equidad y sostenibilidad.

The adoption of artificial intelligence (AI) in formative assessment (FA) in higher education offers opportunities to improve feedback and self-regulation, but poses challenges in ethics, privacy, and equity that require governance frameworks connecting principles with institutional practices. This systematic review and concept mapping aims to analyze governance frameworks, transparency principles, and responsible practices for the adoption of AI in FA in higher education, proposing an adaptable operational framework and an implementation checklist with success indicators. A systematic search was conducted in Scopus, Web of Science, IEEE Xplore, ACM Digital Library, ERIC, and SciELO, with inclusion criteria between 2019 and 2025, culminating in the inclusion of 20 representative studies for final review. The results include a taxonomy of four governance frameworks, algorithmic transparency principles with five main elements, and responsible institutional practices with six operational dimensions. The review demonstrates that the responsible integration of artificial intelligence in formative assessment requires adaptive governance frameworks and holistic institutional practices that ensure transparency, equity, and sustainability.

Sección:
Artículos de Revisión

Referencias

  1. Abdullah, N., y Ismail, A. (2024). Ethical frameworks for AI implementation in diverse educational contexts: Lessons from Southeast Asian universities. International Journal of Educational Technology in Higher Education, 21(1), 45-62. https://doi.org/10.1186/s41239-024-00345-6
  2. Asia-Europe Foundation. (2025). Guidelines for responsible AI governance in education: Balancing innovation and ethical standards across cultural contexts. ASEF Publications. https://www.asef.org/publications/ai-education-governance-guidelines-2025
  3. Bakker, M., van der Laan, L., y Vos, E. (2024). Institutional self-regulation in AI educational governance: Dutch perspectives on accountability and transparency. Journal of Educational Technology & Society, 27(2), 134-152. https://doi.org/10.30191/ETS.202404_27(2).0009
  4. Barthwal, S., Müller, K., y Wagner, T. (2025). Comprehensive algorithmic documentation frameworks for educational AI systems: Technical requirements and pedagogical implications. AI & Education Journal, 18(3), 78-94. https://doi.org/10.1016/j.aiedu.2025.03.005
  5. Brown, K., y Davis, R. (2024). Multi-layered privacy protection strategies in AI-enhanced educational assessment. Computers & Education, 189, 104-118. https://doi.org/10.1016/j.compedu.2024.104118
  6. Chan, K. (2023). A comprehensive framework for algorithmic explainability in educational AI: Technical, pedagogical, and general accessibility levels. Computers & Education, 185, 104-115. https://doi.org/10.1016/j.compedu.2023.104115
  7. Chaudhary, A. (2024). Publication bias and research gaps in AI educational governance: Systematic review of implementation failures and successes. Educational Technology Research and Development, 72(4), 891-908. https://doi.org/10.1007/s11423-024-10324-7
  8. Durand, M., y Larsson, B. (2023). Student data privacy in AI educational systems: Comparative analysis of GDPR and Nordic privacy frameworks. Privacy & Data Protection Journal, 23(2), 45-58. https://doi.org/10.21511/pdpj.23(2).2023.04
  9. Edwards, L., y Watson, D. (2023). Proactive ethical impact assessments for AI implementation in higher education: Australian case studies. Higher Education Policy, 36(4), 612-628. https://doi.org/10.1057/s41307-023-00315-6
  10. Fernandes, R., Santos, P., y Almeida, L. (2024). Integrated staff training programs for responsible AI implementation in Brazilian educational institutions. Education and Information Technologies, 29(5), 5234-5251. https://doi.org/10.1007/s10639-023-12098-7
  11. Garcia, C., Lopez, A., y Morales, D. (2023). Participatory governance frameworks for AI in education: Evidence from Mexican indigenous communities. International Journal of Educational Development, 89, 102-115. https://doi.org/10.1016/j.ijedudev.2023.102115
  12. Hernández, M., González, L., y Ramírez, P. (2024). Integrated institutional practices for responsible AI implementation: A systematic review of success factors in Latin American universities. Educational Technology Research and Development, 72(2), 445-462. https://doi.org/10.1007/s11423-024-10334-5
  13. Högberg, J. (2024). Comprehensive metrics for evaluating AI governance framework effectiveness: Process and outcome indicators in Nordic educational contexts. International Journal of Educational Governance, 15(1), 78-95. https://doi.org/10.1080/17439042.2024.2187654
  14. Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., … & Koedinger, K. R. (2023). Ethics of AI in education: Towards a community-wide framework. International Journal of Artificial Intelligence in Education, 33(2), 504-526. https://doi.org/10.1007/s40593-021-00239-1
  15. Ifenthaler, D., Yau, Y, Chee, Y., y Spector, J. (2024). Towards operational AI governance in educational institutions: From principles to practice. Educational Technology Research and Development, 72(1), 123-140. https://doi.org/10.1007/s11423-023-10314-2
  16. Johnson, M., y Williams, S. (2023). Multi-language communication materials and family engagement in AI-enhanced educational assessment: Evidence from Latino communities. Urban Education, 58(6), 987-1008. https://doi.org/10.1177/00420859231178923
  17. Klímová, B., Poulová, P., y Václavík, M. (2023). Epistemic inequality in AI education research: Geographic and cultural bias in published studies. Education and Information Technologies, 28(8), 9567-9584. https://doi.org/10.1007/s10639-023-11456-z
  18. Lin, C., y Su, Y. (2024). Algorithmic transparency principles for educational AI systems: A comprehensive framework. Educational Technology Research and Development, 72(3), 567-584. https://doi.org/10.1007/s11423-024-10345-9
  19. Luckin, R. (2023). Hybrid auditing approaches for reducing algorithmic bias in educational AI systems: Combined automated and human review effectiveness. British Journal of Educational Technology, 54(2), 298-315. https://doi.org/10.1111/bjet.13278
  20. Martínez, R., y Johnson, K. (2023). Comprehensive privacy protection frameworks for AI in educational settings: Beyond compliance requirements. Journal of Educational Privacy and Security, 8(1), 23-38. https://doi.org/10.1515/jeps-2023-0002
  21. Mendoza, R., Silva, A., y Costa, J. (2023). Cultural and linguistic diversity integration in AI governance frameworks: Evidence from Brazilian educational institutions. International Journal of Multicultural Education, 25(2), 112-128. https://doi.org/10.18251/ijme.v25i2.3456
  22. Mensah, A., y Appiah, F. (2024). Stakeholder diversity and AI system acceptance in Sub-Saharan African educational contexts: Participatory governance effectiveness. African Educational Research Journal, 12(1), 67-84. https://doi.org/10.30918/AERJ.121.24.156
  23. Moreau, Y., y Andersson, S. (2024). Student agency and algorithmic decision-making: Appeal mechanisms and human review processes in educational AI. Learning and Instruction, 89, 101-114. https://doi.org/10.1016/j.learninstruc.2024.101114
  24. Okafor, C., y Adebayo, O. (2023). Participatory AI governance in resource-limited educational settings: Nigerian university case study. International Journal of Educational Development in Africa, 11(2), 145-162. https://doi.org/10.1080/1467598X.2023.2187654
  25. Patel, N., y Kumar, R. (2023). Context-sensitive algorithmic fairness in resource-constrained educational environments: Indian university perspectives. Computers & Education, 198, 104-117. https://doi.org/10.1016/j.compedu.2023.104117
  26. Patki, V., Agarwal, R., y Sharma, S. (2023). Transparent decision-making in AI-enhanced formative assessment: Framework for resource-limited contexts. Educational Technology Research and Development, 71(4), 889-906. https://doi.org/10.1007/s11423-023-10234-8
  27. Rodríguez, P., y Gómez, M. (2024). Indigenous and rural community considerations in AI educational governance frameworks: Mexican perspectives. Journal of Diversity in Higher Education, 17(2), 234-248. https://doi.org/10.1037/dhe0000456
  28. Shamsi, A., Zhang, Q., y Lee, K. (2025). Pedagogical implications of algorithmic documentation: Bridging technical specifications and educational outcomes. AI & Society, 40(1), 89-104. https://doi.org/10.1007/s00146-024-01234-5
  29. Silva, F., y Costa, G. (2023). Technical, ethical and cultural staff training for AI implementation in Brazilian educational contexts: Integrated program design. Education and Training, 65(5), 623-638. https://doi.org/10.1108/ET-07-2023-0523
  30. Sullivan, M., y Morrison, K. (2024). Ethics committees and AI oversight in Australian higher education: Multidisciplinary governance structures. Higher Education Research & Development, 43(2), 298-312. https://doi.org/10.1080/07294360.2024.2123456
  31. Sun, J., y Hoelscher, C. (2023). The scholarly landscape of AI educational governance: Systematic review reveals limited longitudinal outcome evidence. Educational Research Review, 38, 100-114. https://doi.org/10.1016/j.edurev.2023.100114
  32. Tan, L., y Lee, C. (2024). National regulatory frameworks for AI in education: Singapore’s hybrid approach to compliance and institutional flexibility. Asia Pacific Journal of Education, 44(1), 156-172. https://doi.org/10.1080/02188791.2024.2234567
  33. Tan, W., y Lim, A. (2024). ASEAN perspectives on educational AI governance: Cultural adaptation of global frameworks. Educational Technology Research and Development, 72(1), 234-251. https://doi.org/10.1007/s11423-024-10367-8
  34. Thompson, R., Clark, L., y Wilson, P. (2024). Regular algorithmic auditing with differential impact focus: Improving fairness metrics in Canadian educational AI systems. Educational Technology Research and Development, 72(2), 334-351. https://doi.org/10.1007/s11423-024-10378-9
  35. Van der Laan, L., y Vos, E. (2023). Institutional accountability mechanisms in AI educational governance: Dutch university case studies. Higher Education Policy, 36(3), 489-506. https://doi.org/10.1057/s41307-023-00298-5
  36. Wambach, L., Schmidt, M., y Friedrich, C. (2024). Specialized training programs and implementation success rates in German educational institutions: Generic vs. tailored AI training effectiveness. Computers & Education, 208, 104-118. https://doi.org/10.1016/j.compedu.2024.104118
  37. Wong, M., y Chong, K. (2023). Student appeal mechanisms in AI-enhanced assessment: Accessibility and utilization patterns in Singapore universities. Assessment & Evaluation in Higher Education, 48(4), 567-582. https://doi.org/10.1080/02602938.2023.2187654
  38. Yan, Z., Chen, H., y Wang, L. (2025). Participatory governance frameworks for AI in education: Implementation costs and adoption rates - A systematic review. Computers & Education, 198, 104-117. https://doi.org/10.1016/j.compedu.2024.104117