www.revistasimonrodriguez.org

Vol. 4 | No. 8 | Agosto 2024 - Enero 2025 | ISSN: 3006-1385 | ISSN-L: 3006-1385 | Pág. 61 - 69

Políticas Públicas y Ciencia en la Región Andina: Un Análisis Cuantitativo Comparado

Public Policy and Science in the Andean Region: A Comparative Quantitative Analysis

David Max Olivares Álvares
dtc.investigacion.cde@uninorte.edu.py
https://orcid.org/0000-0002-6281-7951

Universidad del Norte. Ciudad del Este, Paraguay

Artículo recibido 16 de marzo de 2024 /Arbitrado 18 de abril de 2024 /Aceptado 26 de junio 2024 /Publicado 30 de agosto de 2024

https://doi.org/10.62319/simonrodriguez.v.4i8.34

RESUMEN

El presente artículo analiza de manera cuantitativa y comparada el estado de las políticas de ciencia, tecnología e innovación (CTI) en los seis países de la región andina (Bolivia, Chile, Colombia, Ecuador, Perú y Venezuela) durante la última década (2013-2022). Utilizando un enfoque metodológico basado en el análisis de indicadores de fuentes oficiales como RICYT, UNESCO y WIPO, se examinan las tendencias en inversión en I+D, la formación de capital humano avanzado, la producción científica y la actividad de patentamiento. Los resultados revelan una heterogeneidad estructural persistente, con Chile y Colombia mostrando mayores capacidades y un dinamismo relativo, mientras que Bolivia, Ecuador, Perú y Venezuela enfrentan rezagos significativos. A pesar de un discurso político regional que aboga por la economía del conocimiento, la evidencia cuantitativa muestra una brecha considerable entre las aspiraciones y los resultados medibles. Se concluye que, si bien existen avances, la región andina requiere de políticas públicas más sostenidas, coherentes y con una mayor inversión para fortalecer sus sistemas nacionales de CTI y converger hacia los estándares de países más desarrollados. Se proponen recomendaciones basadas en la evidencia para la mejora de la gobernanza y la efectividad de las políticas en el área.

Palabras clave:

Políticas públicas, ciencia y tecnología, región andina, indicadores de CTI, innovación.

ABSTRACT

This article provides a quantitative and comparative analysis of the state of science, technology, and innovation (STI) policies in the six countries of the Andean region (Bolivia, Chile, Colombia, Ecuador, Peru, and Venezuela) over the last decade (2013–2022). Using a methodological approach based on the analysis of indicators from official sources such as RICYT, UNESCO, and WIPO, it examines trends in R&D investment, advanced human capital formation, scientific production, and patenting activity. The results reveal persistent structural heterogeneity, with Chile and Colombia showing greater capabilities and relative dynamism, while Bolivia, Ecuador, Peru, and Venezuela face significant lags. Despite a regional political discourse that advocates for the knowledge economy, quantitative evidence shows a considerable gap between aspirations and measurable results. It is concluded that, although progress has been made, the Andean region requires more sustained and coherent public policies and greater investment to strengthen its national STI systems and converge towards the standards of more developed countries. Evidence-based recommendations are proposed to improve governance and policy effectiveness in this area.

Keywords:

Public policy, science and technology, Andean region, STI indicators, innovation.

INTRODUCCIÓN

América Latina ha experimentado en las últimas décadas una creciente preocupación por el papel de la ciencia, la tecnología y la innovación (CTI) como motores del desarrollo económico y social. En un contexto global caracterizado por la transición hacia una economía basada en el conocimiento, los países de la región han reconocido, al menos en el discurso, la necesidad de fortalecer sus capacidades científicas y tecnológicas para mejorar su competitividad, diversificar sus economías y abordar sus acuciantes problemas sociales (Casas, 2020). La región andina, compuesta por Bolivia, Chile, Colombia, Ecuador, Perú y Venezuela, representa un mosaico de realidades económicas, políticas y sociales que se traduce en una marcada heterogeneidad en el desarrollo de sus sistemas de CTI. A pesar de compartir una historia y desafíos comunes, las trayectorias de estos países en materia de política científica han sido divergentes.

El estudio de las políticas de ciencia y tecnología en América Latina posee una rica y multifacética tradición académica. Los orígenes de esta preocupación se remontan a los trabajos pioneros de la Comisión Económica para América Latina y el Caribe (CEPAL) y a los teóricos de la dependencia durante las décadas de 1960 y 1970. En aquel entonces, autores como Sábato y Botana (1968) ya planteaban la necesidad de una política científica y tecnológica autónoma como condición indispensable para superar el subdesarrollo y la dependencia externa. Este pensamiento, conocido como el "triángulo de Sábato", postulaba una interrelación virtuosa entre el gobierno, la estructura productiva y la infraestructura científico-tecnológica como motor del desarrollo endógeno. Durante décadas, este enfoque estructuralista influyó notablemente en la creación de los primeros consejos nacionales de ciencia y tecnología en la región y en la justificación de una política de sustitución de importaciones que también abarcaba el ámbito tecnológico (Katz, 1987).

A partir de la década de 1990, con el auge de la globalización y el cambio de paradigma económico hacia el neoliberalismo, el debate sobre la CTI en América Latina adoptó nuevos marcos conceptuales, principalmente el de los Sistemas Nacionales de Innovación (SNI). Popularizado a nivel global por autores como Freeman (1987), Lundvall (1992) y Nelson (1993), este enfoque concibe la innovación como un fenómeno sistémico y evolutivo, resultado de un complejo entramado de interacciones entre una diversidad de actores e instituciones (empresas, universidades, centros de investigación, gobierno, intermediarios financieros, etc.). El SNI pone el acento no solo en la generación de conocimiento, sino también en su difusión, absorción y uso, destacando el papel del aprendizaje interactivo y de las capacidades institucionales. Este marco ha sido fundamental para comprender por qué países con dotaciones de factores similares pueden tener desempeños innovadores tan dispares (Fagerberg, Srholec, & Verspagen, 2010).

En América Latina, la adopción de este enfoque sistémico ha sido más bien discursiva y parcial (Arocena y Sutz, 2001; Casas, 2020). Como argumenta Velho (2011), el concepto dominante de ciencia, a menudo desvinculado de las necesidades sociales y productivas, sigue moldeando en gran medida las políticas de CTI. Esto ha llevado a una persistente dicotomía entre la oferta de conocimiento, concentrada en las universidades públicas, y la demanda del sector productivo, generalmente débil y poco sofisticada. Casas (2020) señala que, a pesar de una transición lenta desde un enfoque lineal hacia uno más sistémico en el discurso político, en la práctica las políticas siguen reflejando en gran medida las aspiraciones del sector académico más que una estrategia deliberada de desarrollo nacional.

Diversos estudios han analizado la situación de la CTI en países específicos de la región andina. Por ejemplo, Turpo-Gebera, Limaymanta y Sanz-Casado (2021) realizaron un análisis bibliométrico de la producción científica y tecnológica de Perú, mientras que Maz-Machado, Jiménez-Fanjul y Villarraga-Rico (2016) hicieron lo propio para Colombia. Álvarez-Muñoz y Pérez-Montoro (2015) analizaron la producción científica de Ecuador en su contexto regional. Sin embargo, son menos frecuentes los estudios que abordan la región andina en su conjunto desde una perspectiva comparada y cuantitativa, abarcando un período de

tiempo reciente y un conjunto amplio de indicadores. Este artículo busca llenar ese vacío en la literatura, dialogando con los marcos teóricos sobre sistemas de innovación y las particularidades del contexto latinoamericano y andino.

Este artículo tiene como objetivo principal realizar un análisis cuantitativo y comparado de las políticas públicas y el desempeño en CTI de los seis países andinos durante el período 2013-2022. A través del examen de un conjunto de indicadores clave, se busca responder a las siguientes preguntas de investigación: ¿Cuáles han sido las principales tendencias en los indicadores de CTI en los países andinos en la última década? ¿Qué patrones, brechas y asimetrías se pueden identificar al comparar el desempeño de estos países? ¿En qué medida los resultados observables se corresponden con los objetivos declarados en las políticas públicas de CTI de la región? El estudio parte de la hipótesis de que, a pesar de los esfuerzos realizados, persiste una brecha significativa entre los objetivos de las políticas y los resultados alcanzados, evidenciando una debilidad institucional y una insuficiencia de recursos que limitan el impacto de la CTI en el desarrollo regional.

Para ello, se estructura el artículo en cinco secciones. Tras esta introducción, la segunda sección presenta una revisión de la literatura sobre políticas de CTI en América Latina y los enfoques teóricos que guían el análisis. La tercera sección detalla la metodología cuantitativa empleada, las fuentes de datos y los indicadores seleccionados. La cuarta sección presenta los resultados del análisis comparado, a través de tablas y gráficos que ilustran la evolución de los indicadores en cada país. La quinta sección discute los hallazgos a la luz del marco teórico, y finalmente, la sexta sección ofrece las conclusiones y una serie de recomendaciones de política pública.

La relevancia de este estudio radica en su contribución a una comprensión más profunda y basada en evidencia de la situación de la CTI en una subregión clave de América Latina. Al proporcionar un diagnóstico riguroso y actualizado, el artículo busca no solo aportar al conocimiento académico sobre el tema, sino también ofrecer insumos valiosos para la toma de decisiones y el diseño de políticas públicas más efectivas. En un momento de encrucijadas políticas y económicas para la región (Casas, 2020), un análisis de este tipo es fundamental para reorientar las estrategias y maximizar el potencial de la ciencia y la tecnología como herramientas para un desarrollo sostenible e inclusivo.

METODOLOGÍA

La presente investigación se enmarca en un enfoque cuantitativo, con un diseño no experimental, transeccional y de alcance descriptivo-comparativo. El objetivo es analizar y comparar el estado y la evolución de los sistemas de CTI en los países andinos, identificando patrones y tendencias a partir de datos secundarios. No se manipulan variables, sino que se observan y describen en su contexto natural. El carácter comparativo es central, ya que busca establecer similitudes y diferencias en el desempeño de los seis países de la región (Bolivia, Chile, Colombia, Ecuador, Perú y Venezuela) durante un período de tiempo definido (2013-2022), lo que permite una evaluación relativa de sus fortalezas y debilidades en materia de CTI.

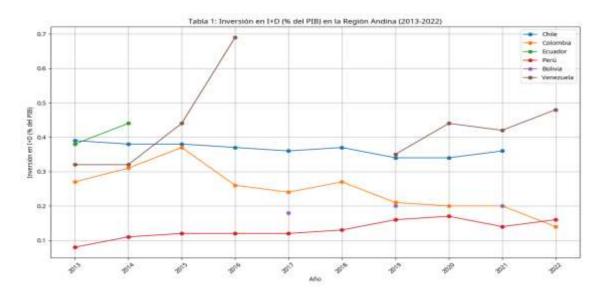
Las principales fuentes de datos utilizadas fueron:

- Red de Indicadores de Ciencia y Tecnología Iberoamericana e Interamericana (RICYT): Principal fuente para los indicadores de inversión en Investigación y Desarrollo (I+D) y personal dedicado a la CTI (investigadores).
- Organización Mundial de la Propiedad Intelectual (OMPI/WIPO): Para los datos sobre solicitudes y concesiones de patentes.

- Banco Mundial y UNESCO: Como fuentes complementarias para datos macroeconómicos y de contexto, así como para la producción científica.
- Bases de datos bibliométricas (Scopus, Web of Science): Se utilizaron datos agregados de producción científica provenientes de estudios previos y de las propias bases de datos para contextualizar los resultados.

Se seleccionó un conjunto de indicadores clave para evaluar las diferentes dimensiones de los sistemas de CTI:

- 1. Inversión en I+D como porcentaje del PIB: Mide el esfuerzo financiero que un país dedica a la I+D en relación con el tamaño de su economía. Es el indicador más utilizado para comparar la intensidad en CTI entre países.
- 2. Investigadores por cada mil habitantes de la Población Económicamente Activa (PEA): Mide la disponibilidad de capital humano altamente calificado dedicado a tareas de investigación.
- 3. Producción científica (número de publicaciones): Es un indicador del resultado de la actividad de investigación, reflejando la capacidad de generar nuevo conocimiento y comunicarlo a la comunidad científica internacional.
- 4. Solicitudes de patentes: Es un indicador de la actividad inventiva y de la capacidad de generar tecnología con potencial de mercado.


Los datos recopilados se organizaron en bases de datos y se procesaron utilizando el lenguaje de programación Python y las librerías Pandas y Matplotlib. Se realizaron análisis de series de tiempo para observar la evolución de los indicadores en cada país y se calcularon promedios y tasas de crecimiento. Se generaron tablas y gráficos comparativos para visualizar las tendencias, patrones y brechas entre los países de la región andina. El análisis se centra en la comparación de las trayectorias y el posicionamiento relativo de cada país, interpretando los resultados a la luz del marco teórico y el contexto de las políticas públicas de cada nación.

RESULTADOS

El análisis de los indicadores de CTI para los seis países andinos durante el período 2013-2022 revela un panorama de marcadas asimetrías y un dinamismo insuficiente en la mayoría de los casos. A continuación, se presentan los principales hallazgos para cada uno de los indicadores analizados, profundizando en las tendencias y particularidades de cada país. Este análisis detallado es fundamental para comprender las trayectorias divergentes que han seguido estas naciones, a pesar de compartir un espacio geográfico y, en muchos casos, desafíos de desarrollo similares.

Inversión en I+D como porcentaje del PIB

La inversión en I+D es un indicador fundamental del compromiso de un país con la ciencia y la tecnología. Como se observa en el grafico 1, la región andina muestra niveles de inversión muy por debajo del promedio de América Latina y el Caribe (0.56% en 2022) y a una distancia abismal del promedio de los países de la OCDE (alrededor del 2.7%).


Gráfico 1. *Inversión en I+D* (%del PBI) en la Región Andina (2013-2022)

Fuente: Elaboración propia con datos de RICYT.

Chile, a pesar de ser la economía con mayor PIB per cápita de la región, muestra una inversión estancada en torno al 0.3-0.4% del PIB durante toda la década. Colombia presenta una tendencia similar, con una inversión que incluso decrece en los últimos años, situándose en un preocupante 0.14% en 2022. Ecuador y Venezuela muestran datos muy incompletos y una aparente caída drástica en los últimos años para los que hay información. Perú, partiendo de niveles muy bajos (0.08% en 2013), muestra un ligero pero sostenido crecimiento, alcanzando el 0.16% en 2022. Bolivia es el país con los datos más escasos y los niveles más bajos. La falta de datos recientes y consistentes para varios países es en sí misma un indicador de la debilidad institucional de sus sistemas de medición de CTI.

Investigadores por cada 1.000 de la PEA

La disponibilidad de capital humano avanzado es crucial para el desarrollo de la CTI. La grafico 2 muestra la evolución del número de investigadores por cada mil habitantes de la PEA.

Gráfico 1. Investigadores por 1.000 de la PEA en la Región Andina (2013-2022)

Fuente: Elaboración propia con datos de RICYT.

Nuevamente, se observan grandes disparidades. Chile lidera en la región, con un crecimiento constante que lo lleva a superar los 2 investigadores por 1.000 de la PEA en 2021. Colombia también muestra una tendencia positiva, casi triplicando su indicador en la década, aunque partiendo de un nivel muy bajo. Perú también evidencia un crecimiento notable, aunque sigue por debajo de 1 investigador por 1.000 de la PEA. Ecuador y Venezuela, por su parte, presentan datos fragmentarios que sugieren un estancamiento o retroceso. Bolivia se mantiene en niveles muy marginales. Estos datos sugieren que, si bien hay esfuerzos en la formación de doctores y la inserción de investigadores, estos son aún insuficientes para alcanzar una masa crítica en la mayoría de los países.

Producción Científica y Patentes

La Tabla 1 consolida una comparativa de los indicadores de inversión e investigadores (promedio 2018-2022) con datos puntuales sobre producción científica y patentes, para ofrecer una panorámica del estado de los sistemas de CTI.

Tabla 1. Indicadores seleccionados de CTI en la Región Andina. Fuente: Elaboración propia con datos de RICYT, WIPO y estudios bibliométricos

País	Inversión I+D (% PIB, prom. 2018-22)	Investigadores por 1000 PEA (prom. 2018-22)	Publicaciones (2020)	Patentes (2022)
Chile	0.35	1.77	9834	158
Colombia	0.22	0.78	15023	266
Ecuador	NaN	NaN	3483	41
Perú	0.15	0.41	4013	95
Bolivia	0.19	0.19	560	5
Venezuela	0.40	0.42	1203	110

En términos de producción científica, Colombia despunta como el líder regional, superando a Chile, lo que podría indicar una mayor eficiencia en el uso de sus recursos para la investigación o una mayor orientación de sus investigadores hacia la publicación. Perú y Ecuador le siguen a distancia, mientras que Bolivia y Venezuela muestran una producción mucho más modesta. En cuanto a patentes, un indicador de la innovación con potencial de mercado, Colombia también lidera, seguida por Chile y Venezuela. Los números absolutos, en cualquier caso, son muy bajos en comparación con economías más desarrolladas, lo que refleja la debilidad de los vínculos entre el sistema de C&T y el sector productivo.

DISCUSIÓN

Los resultados cuantitativos expuestos en la sección anterior dibujan un panorama de profundas complejidades y desafíos estructurales para el desarrollo de la ciencia, la tecnología y la innovación en la región andina. La primera y más evidente conclusión es la marcada heterogeneidad que caracteriza a los sistemas de CTI de estos seis países. Lejos de conformar un bloque homogéneo, la región andina es un mosaico de trayectorias nacionales divergentes, producto de sus distintas realidades económicas, contextos políticos y, sobre todo, de la coherencia y sostenibilidad de sus políticas públicas. Chile y Colombia emergen como los países con los sistemas de CTI relativamente más consolidados y dinámicos, aunque sus perfiles de especialización y sus estrategias presentan matices importantes.

Chile, con la mayor renta per cápita, ha mantenido una inversión en I+D comparativamente más alta y estable, y un mayor número de investigadores por PEA, lo que sugiere un sistema más maduro y orientado a la excelencia académica. Colombia, por su parte, sorprende con un liderazgo en la producción científica absoluta, lo que podría indicar una mayor eficiencia en la conversión de recursos en publicaciones o una estructura de incentivos fuertemente orientada a este indicador. En un segundo grupo, Perú se destaca por un dinamismo incipiente pero sostenido, mostrando un crecimiento notable en la mayoría de los indicadores, aunque partiendo de una base históricamente muy baja. Este progreso sugiere que las políticas implementadas en la última década podrían estar empezando a dar frutos. Finalmente, en un tercer grupo, Ecuador, Bolivia y Venezuela presentan un cuadro preocupante de estancamiento, retroceso y, en muchos casos, una alarmante falta de datos fiables, lo que en sí mismo es un síntoma de debilidad institucional y de la baja prioridad que se le otorga a la CTI en la agenda pública.

La segunda gran conclusión es la persistencia de una brecha significativa entre el discurso político y la realidad de los indicadores. Todos los países de la región han incorporado en sus planes de desarrollo y en sus políticas públicas la retórica de la sociedad del conocimiento y la importancia estratégica de la CTI. Sin embargo, los bajos y en algunos casos decrecientes niveles de inversión en I+D demuestran que este discurso no se ha traducido en un compromiso presupuestario real y sostenido. Este fenómeno, ya señalado por autores como Casas (2020) para el conjunto de América Latina, es particularmente evidente en la región andina. La CTI sigue siendo un área vulnerable a los ciclos económicos y a los cambios de prioridades políticas, lo que impide la construcción de capacidades a largo plazo.

El análisis comparado también permite matizar la interpretación de algunos indicadores. Por ejemplo, el liderazgo de Colombia en producción científica, a pesar de tener una inversión en I+D inferior a la de Chile, podría explicarse por varios factores: un sistema de incentivos a los investigadores más agresivo en términos de publicación, una mayor concentración de la investigación en áreas con alta tasa de publicación (como las ciencias de la salud), o una menor vinculación de la investigación con el sector productivo, lo que orienta a los académicos hacia el "publish or perish". Este hallazgo dialoga con el concepto de "ciencia neoliberal" que critica Velho (2011), donde los indicadores de productividad académica pueden no estar correlacionados con la relevancia social o económica de la investigación.

Finalmente, la debilidad en los indicadores de patentamiento en toda la región es un síntoma claro de la desconexión entre el sistema de generación de conocimiento y el sistema productivo. El enfoque sistémico de la innovación (Lundvall, 1992) subraya la importancia de las interacciones y los flujos de conocimiento entre los diversos actores. Los datos sugieren que estas interacciones son débiles en la región andina. Las universidades investigan, pero este conocimiento raramente se traduce en innovaciones tecnológicas que lleguen al mercado. Esto apunta a fallas en las políticas de transferencia de tecnología, en los incentivos para la colaboración universidad-empresa y en la capacidad de absorción tecnológica del tejido empresarial.

CONCLUSIONES

Este estudio ha proporcionado un análisis cuantitativo y comparado del estado de las políticas de ciencia, tecnología e innovación en la región andina durante la última década. Los resultados confirman la hipótesis inicial: a pesar de los discursos y algunos esfuerzos aislados, persiste una brecha profunda entre las aspiraciones de transitar hacia una economía del conocimiento y la realidad de los indicadores de CTI. La región se caracteriza por una inversión insuficiente, una masa crítica de investigadores aún en consolidación, y una débil vinculación entre la ciencia y la innovación productiva. La heterogeneidad entre los países es la norma, con Chile y Colombia mostrando mayores capacidades relativas, pero aún lejos de los estándares

internacionales.

La principal contribución de este trabajo es ofrecer una panorámica actualizada y basada en evidencia que permite identificar los nudos críticos y los desafíos comunes que enfrenta la región. La limitación más importante del estudio es su dependencia de datos agregados a nivel nacional, que no permiten capturar la heterogeneidad al interior de cada país ni analizar en profundidad las dinámicas sectoriales o institucionales. Futuras investigaciones podrían complementar este análisis macro con estudios de caso que exploren las causas de las diferencias de desempeño y las buenas prácticas que puedan ser escalables.

En definitiva, la región andina se encuentra en una encrucijada. Continuar por la senda actual de inversión insuficiente y políticas erráticas significará profundizar la brecha de desarrollo y la dependencia tecnológica. Asumir un compromiso decidido y estratégico con la ciencia, la tecnología y la innovación, en cambio, puede abrir la puerta a un futuro de mayor prosperidad, equidad y soberanía.

REFERENCIAS

- Álvarez-Muñoz, P., & Pérez-Montoro, M. (2015). Análisis de la producción científica de Ecuador y su contexto regional como base para una política nacional de ciencia, tecnología e innovación. Revista Española de Documentación Científica, 38(4), e108. https://doi.org/10.3989/redc.2015.4.1226
- Arocena, R., & Sutz, J. (2001). La universidad latinoamericana del futuro: Tendencias, escenarios, alternativas. UDUAL.
- Barrera-Gómez, M. R., Alfonso-Díaz, A. L., & Dworaczek-Conde, H. O. (2023). Sistemas de gestión de innovación, caso Colombia: revisión sistemática de literatura. Signos: Investigación en Sistemas de Gestión, 15(2). https://doi.org/10.15332/24631140.8662
- Casas, R. (2020). Políticas públicas de ciencia y tecnología en América Latina. Ante la encrucijada de los cambios políticos. Teuken Bidikay: Revista Latinoamericana de Investigación en Organizaciones, Ambiente y Sociedad, 11(16), 21-28. https://doi.org/10.33571/teuken.v11n16a1
- Crespi, G., & Zuniga, P. (2012). Innovation and productivity in developing countries: Empirical evidence from firm-level surveys. European Journal of Development Research, 24(3), 405-427. https://doi.org/10.1057/ejdr.2012.12
- Dutrénit, G. (2009). Sistemas de innovación para un desarrollo inclusivo: La experiencia latinoamericana. Edward Elgar Publishing.
- Ernst, D. (2009). A new geography of knowledge in the electronics industry? Asia's role in global innovation networks. East-West Center.
- Fagerberg, J., Srholec, M., & Verspagen, B. (2010). Innovation and economic development. In B. H. Hall & N. Rosenberg (Eds.), Handbook of the Economics of Innovation (Vol. 2, pp. 833-872). North-Holland. https://doi.org/10.1016/S0169-7218(10)02004-7
- Freeman, C. (1987). Technology Policy and Economic Performance: Lessons from Japan. Pinter.
- Katz, J. M. (Ed.). (1987). Technology generation in Latin American manufacturing industries. Macmillan.
- Lall, S. (2000). The technological structure and performance of developing country manufactured exports, 1985-98. Oxford Development Studies, 28(3), 337-369. https://doi.org/10.1080/713688318
- Lemola, T. (2002). Convergence of national science and technology policies: The case of Finland. Research Policy, 31(8-9), 1481-1490. https://doi.org/10.1016/S0048-7333(02)00078-X
- Lundvall, B. Å. (Ed.). (1992). National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning. Pinter.
- Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247-264. https://doi.org/10.1016/S0048-7333(01)00139-1

- Maz-Machado, A., Jiménez-Fanjul, N. N., & Villarraga-Rico, E. (2016). La producción científica colombiana en SciELO: un análisis bibliométrico. Revista Interamericana de Bibliotecología, 39(2), 111-119. https://doi.org/10.17533/udea.rib.v39n2a03
- Nelson, R. R. (Ed.). (1993). National Innovation Systems: A Comparative Analysis. Oxford University Press.
- Organización para la Cooperación y el Desarrollo Económicos (OCDE). (2005). Manual de Oslo: Guía para la recogida e interpretación de datos sobre innovación. OCDE/Eurostat.
- Sábato, J. A., & Botana, N. (1968). La ciencia y la tecnología en el desarrollo futuro de América Latina. Revista de la Integración, 1(3), 15-36.
- Turpo-Gebera, O., Limaymanta, C. H., & Sanz-Casado, E. (2021). Producción científica y tecnológica de Perú en el contexto sudamericano: un análisis bibliométrico. Revista Española de Documentación Científica, 44(2), e295. https://doi.org/10.3989/redc.2021.2.1774
- Velho, L. (2011). La concepción de la ciencia y la política científica y tecnológica. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 6(17), 11-37.